Digital terrain modeling techniques for a better subsurface soil layers representation
Alexander Mabrich
Dans les comptes rendus d’articles de la conférence: GeoMontréal 2013: 66th Canadian Geotechnical Conference; 11th joint with IAH-CNCSession: Engineering Geology I
ABSTRACT: Surveyors provide a wealth of data to optimize the civil aspect of capital projects, such as electronic ground data in the form of elevations, ground features, terrain configuration, etc that taken for further processing give the engineers the ability to see a graphical representation of the working site in their computer monitors. Unfortunately in some cases, this information is taken with one discipline in mind: civil engineering, whereas much needed and specific information is required for geotechnical professionals. Data received from surveyors sometimes lack an accurate representation of the ground or terrain features like slope breaking lines, or water flow lines. As the Digital Terrain Modeling or DTM is received in the office, we cannot just assume that this is the accurate representation of our project and when sometimes a site visit is not possible we should employ a DTM post-processing software to evaluate the quality of the information received. The purpose of this paper is to explore available software techniques that could be used to better analyze the data given and interacting with a geotechnical database be able to model a better representation of ground and subsurface conditions in our projects. This paper discusses the different methodologies used to take ground information and thereafter create a proper DTM model of the surface conditions. A Geotechnical database needs also to be properly configured in order to interact with the ground information and depending of the amount data collected we can create an accurate representation of the soil layers in an electronic format, rather than creating soil profiles, interpolating between them and manual connecting the soil layers in a graphical borelog profile report.
RÉSUMÉ: apitaux, tel que données électroniques du sol sous forme d'élévations, caractéristiques du sol, configuration du terrain, etc., qui utilisé par la suite donne la capacité aux ingénieurs de voir une représentation graphique du site actif dans leurs ordinateurs. Malheureusement dans quelques cas, cette information est amenée avec une seule discipline dans l'esprit: géotechnique. Les données reçues des arpenteurs ont parfois un manque au niveau d'une représentation exacte de sol ou des caractéristiques de celui-courant de l'eau. Comme le Modelage de Terrain Numérique ou DTM est reçu dans le bureau, nous ne pouvons pas n'est pas possible nous devrions employer un logiciel de post-traitement de DTM pour évaluer la qualité de l'information ont reçu. mieux analyser les données fournies et réagir réciproquement avec une base de données du géotechnique capable de modeler une meilleure représentation des conditions du sol et du souterrain de nos projets. Cette présentation discutera également des méthodologies différentes de cueillette de l'information et par la suite créer un modèle DTM adéquat des conditions de la surface. Une base de données Géotechnique doit aussi être configurée correctement pour réagir réciproquement l'information obtenue et dépendre des données du montant à rassembler. Nous pouvons créer une représentation exacte du sol en couches dans un format électronique, plutôt que créer des profils du sol interpolés entre eux et relier manuellement le sol en couches dans un carnet graphique et profiler le rapport fourni par les arpenteurs. 1 SUBSURFACE DATA Given the ground configuration, geotechnical engineers are required to provide information about the subsurface conditions of the worksite. Lamentably, not many tools are available for that purpose as they need to rely in just two major sources of information: Geological Maps and Soil Borings. Geological maps are done showing a large area but due to the small size of the project become too generic to represent the specific conditions of our project. Soil borings, being the next source of information, are taken along the project, but at predetermined intervals just based on spacing rather than actual ground conditions. For example, a typical roadway project may require soil borings every 150 m feet just along the centerline of construction, or a soil boring at a foundation location. Using a combination of these two sources of information,
Please include this code when submitting a data update: GEO2013_508
Retrouver cet article:
Les membres de la Société canadienne de géotechnique peuvent accéder à cet article, ainsi qu'à tous les autres articles de la Conférence Géotechnique Canadienne, dans le Espace membre. Les comptes rendus d'articles sont également disponibles dans de nombreuses bibliothèques.
Citer cet article:
Alexander Mabrich (2013) Digital terrain modeling techniques for a better subsurface soil layers representation in GEO2013. Ottawa, Ontario: Canadian Geotechnical Society.
@article{GeoMon2013Paper508,
author = Alexander Mabrich,
title = Digital terrain modeling techniques for a better subsurface soil layers representation,
year = 2013
}
title = Digital terrain modeling techniques for a better subsurface soil layers representation,
year = 2013
}