Estimating The Ultimate Load Carrying Capacity Of Reinforced Earth Structures
Lalinda Weerasekara
Dans les comptes rendus d’articles de la conférence: GeoVancouver 2016: 69th Canadian Geotechnical ConferenceSession: FOUNDATION DESIGN - I Retaining Walls & Spread Footings
ABSTRACT: The current practice for designing reinforced soil structures involves use of empirical or semi-empirical methods to estimate the maximum reinforcement loads using different variants of tributary area methods, and the factors of safety against pullout and tensile rupture are calculated for each individual reinforcement. Besides the limitations in capturing the actual soil-reinforcement interaction, the factors of safety estimated using these methods would not provide an indication of the ultimate load capacity of the reinforced soil structure as a whole. This paper presents a method called the Soil Reinforcement Interaction (SRI) method to assess the internal stability of reinforced soil structures. The model employs a more refined interface friction model, which is then combined with the reinforcement stiffness to obtain an analytical model that relates the displacement, strain, force and mobilized frictional length for a given reinforcement. Using this model, an approach was developed to assess the performance of full-scale reinforced soil structures. Besides estimating the reinforcement behaviour under working stress conditions, the method allows to estimate the ultimate load carrying capacity of the reinforced soil structures, and thereby obtain a more realistic factor of safety against internal failure. Besides accounting for the soil-reinforcement interaction and impact of boundary conditions, the method allows for the simulation of load redistribution if a reinforcement(s) reaches their pullout or tensile capacities. To demonstrate the applicability of this method, a full-scale reinforced wall surcharged to failure was modeled.
RÉSUMÉ: La pratique actuelle pour la conception de structures de sol renforcées implique l'utilisation de méthodes empiriques ou semi-empiriques pour estimer les charges maximales de renforcement en utilisant différentes variantes de méthodes renforcement individuel. Outre les limitations de capture de l'interaction sol-renforcement proprement dit, les coefficients structure de sol renforcé Renforcement-t ensuite combiné avec la rigidité de renforcement pour obtenir un modèle analytique mettant en relation le déplacement, la déformation, la force et la longueur de frottement mobilisée pour une structure de sol renforcée donnée. En utilisant ce modèle, une approche a été développée pour évaluer la performance de structures de sol renforcées à grande échelle. En plus de l'estimation du comportement du renforcement sous des conditions de contrainte, la méthode permet d'estimer la capacité de charge maximale des structures de sol renforcées et, par conséquent un facteur de sécurité plus réaliste contre une défaillance interne. En plus de tenir en compte de l'interaction renforcement-sols et de l'impact des conditions limites, la méthode permet de simuler la redistribution de la charge si un renfort (s) atteint ses capacités d'arrachement ou de traction. Pour démontrer l'applicabilité de cette méthode, un mur renforcé et surchargé a été modélisé à grande échelle.
Please include this code when submitting a data update: GEO2016_3617
Retrouver cet article:
Les membres de la Société canadienne de géotechnique peuvent accéder à cet article, ainsi qu'à tous les autres articles de la Conférence Géotechnique Canadienne, dans le Espace membre. Les comptes rendus d'articles sont également disponibles dans de nombreuses bibliothèques.
Citer cet article:
Lalinda Weerasekara (2016) Estimating The Ultimate Load Carrying Capacity Of Reinforced Earth Structures in GEO2016. Ottawa, Ontario: Canadian Geotechnical Society.
@article{3617_0513142143,
author = Lalinda Weerasekara,
title = Estimating The Ultimate Load Carrying Capacity Of Reinforced Earth Structures,
year = 2016
}
title = Estimating The Ultimate Load Carrying Capacity Of Reinforced Earth Structures,
year = 2016
}