EN FR
GeoConferences.ca

Laboratory investigation for on site chemical oxidation of surface soil contaminated with energetic materials in demolition ranges

Marie-Claude Lapointe, Richard Martel, Emmanuela Diaz

In the proceedings of: GeoMontréal 2013: 66th Canadian Geotechnical Conference; 11th joint with IAH-CNC

Session: Contaminated Sites and Remediation II

ABSTRACT: In order to reduce the potential long-term impact of energetic materials (EM) released into the environment due to military training activities, best management practices and remediation technologies are under development. Demolition ranges have been selected for a technology demonstration because of their limited surface area, associated surface soil and water contamination. In this regard, they are easier to secure than large impact areas and the military activities conducted on such sites make them more suitable for field instrumentation in order to follow the behavior of the technology developed. High levels of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are found on surface soils, discharged from unconfined blocks of C4 used for demolition activities such as wood, steel or concrete cutting. Other explosives such as nitroglycerine (NG), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4-dinitrotoluene may also be present in the soil and water, originating from blow-in-place operations of other explosive ordinance. The heterogeneous size of particles of EM residues found in soil of demolition ranges and the possibility of having them buried are a challenge that the remediation technology must overcome. The use of liquid chemical oxidant on surface soil is under development because it is readily deployed, does not need soil excavation, is safe and easy to implement, therefore reducing the disturbance to military activities. This paper shows results from laboratory experiments of chemical oxidation of RDX in soils. Different oxidants and activators have been tested on soils coming from five demolition ranges located across Canada. Different surfactants have also been in contact with EM in order to evaluate if they can increase their aqueous solubility and change their wettability before being in contact with the oxidant solution. Laboratory results show the potential use of this technology to degrade EM from contaminated surface soils.

Access this article:
Canadian Geotechnical Society members can access to this article, along with all other Canadian Geotechnical Conference proceedings, in the Member Area. Conference proceedings are also available in many libraries.

Cite this article:
Marie-Claude Lapointe; Richard Martel; Emmanuela Diaz (2013) Laboratory investigation for on site chemical oxidation of surface soil contaminated with energetic materials in demolition ranges in GEO2013. Ottawa, Ontario: Canadian Geotechnical Society.

@article{GeoMon2013Paper648,author = Marie-Claude Lapointe; Richard Martel; Emmanuela Diaz,title = Laboratory investigation for on site chemical oxidation of surface soil contaminated with energetic materials in demolition ranges ,year = 2013}